Sharp bound of the kth eigenvalue of trees
نویسنده
چکیده
The sharp lower bound of the kth largest positive eigenvalue of a tree T with n vertices, and the sharp lower bound of the positive eigenvalues of such a tree Tare worked out in this study. A conjecture on the sharp bound of the kth eigenvalue of such a T is proved.
منابع مشابه
An Upper Bound on the First Zagreb Index in Trees
In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملOn the kth Eigenvalues of Trees with Perfect Matchings
Let T + 2p be the set of all trees on 2p (p ≥ 1) vertices with perfect matchings. In this paper, we prove that for any tree T in T + 2p , the kth largest eigenvalue λk(T ) satisfies λk(T ) ≤ 1 2 “q ̊ p k ˇ − 1 + q ̊ p k ˇ + 3 ” (k = 1, 2, . . . , p). This upper bound is known to be best possible when k = 1. The set of trees obtained from a tree on p vertices by joining a pendent vertex to each ve...
متن کاملSharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملOn trees attaining an upper bound on the total domination number
A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$. The total domination number of a graph $G$, denoted by $gamma_t(G)$, is~the minimum cardinality of a total dominating set of $G$. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004), 6...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 128 شماره
صفحات -
تاریخ انتشار 1994